Skip to main content

Newfound Stellar Companion May Explain Black Hole System

 

From - Sky & Telescope 

a black dot surrounded by a swirling disk of hot gas, which is being siphoned from a nearby orange star
Artist's concept of the V404 Cygni system, in which a black hole is stealing gas from a nearby star. Astronomers had thought the system was only a binary, but a second star (upper white flash) orbits at a much farther distance.
Jorge Lugo

The system V404 Cygni is an old favorite with astronomers. The binary contains a 9-solar-mass black hole that’s slurping gas from a star slightly less massive than the Sun. Astronomically speaking, only a hair’s breath separates the pair: 0.14 astronomical unit, or less than half Mercury’s average distance from the Sun. (This is normal for these kinds of systems.)

The hot gas swirling down onto the black hole creates an X-ray beacon. In fact, V404 Cygni was the first system of its kind — called a low-mass X-ray binary, or LMXB, where the “low mass” refers to the companion star — that astronomers agreed hosts a black hole.

But after decades of study, V404 Cygni has still given scientists a surprise.

Even back in the early 1990s, astronomers noticed another star almost on top of the binary as seen from our perspective. Most researchers assumed the star was an interloper, its proximity to the binary an optical illusion.

But as Kevin Burdge (Massachusetts Institute of Technology) and others report October 23rd in Naturethis star is part of the V404 Cygni system, after all.

The team combined a suite of observations from ground- and space-based telescopes, determining that the star moves through space with the binary. The tertiary star is a shirttail relation, however: It lies more than 3,500 au from the inner binary, or roughly 90 times farther out than Pluto lies from the Sun. At such a great distance, the star ambles along in its orbit at only a few kilometers per second.

Furthermore, the star is reaching its golden years, transitioning away from hydrogen-core fusion en route to becoming an old, puffy red giant. Based on this information, the team deduces that the system is between 3 and 5 billion years old — similar in age to the solar system. The three objects seem to have been together from the get-go.

Far from a curiosity, the tertiary star may help astronomers clinch how low-mass X-ray binaries form in the first place.

LMXBs are hard to explain. Black holes are the remnants of massive stars, and as a massive star swells with age it should merge with a small companion, instead of doffing its own outer layers in such a way that leaves the small star unscathed.

In 2016, Smadar Naoz (University of California, Los Angeles) and her colleagues suggested that a third, distant companion star could solve the problem. In this scenario, the inner binary forms with the stars on a much wider orbit, separated by about 100 au, while the third orbits the pair roughly 10,000 au away. Over time, the gravitational interaction of the distant, third star with the inner binary has a sort of kneading effect on the inner binary’s orbit, changing the orbit’s tilt, then its elongation, in a cyclic pattern.

When the soon-to-be-a-black-hole star ages and starts losing its layers, the change in mass upsets equilibrium, causing the orbits to expand. The inner binary’s orbit expands much more than the tertiary’s orbit. This expansion ramps up the gravitational kneading effects, driving the inner binary to extreme elongations.

During the phases when the orbit is highly elongated, the star and black hole in the inner binary come close together, and the tidal forces stretch and squeeze the star, sapping energy from its motion. That, combined with other effects, leads the inner binary’s orbit to shrink dramatically.

The tertiary’s properties in V404 Cygni match what Naoz’s team predicted. “I’m very excited by this discovery,” she says. She’s now collaborating with Burdge to investigate the system’s history in more detail.

Curiously, the black hole seems to have had a quiet death. We normally think of massive stars’ deaths as messy, violent affairs, their haphazard explosions sending their remnants rocketing away from the site of demise. Astronomers have found plenty of neutron stars with such “kicks” to their velocity. But whether black holes also receive a kick during formation has remained unknown.

For V404 Cygni’s tertiary to still hang on to the inner binary, the black hole must have formed with little to no kick. The star might even have imploded without fanfare.

Reference: K. B. Burdge et al. “The Black Hole Low-Mass X-ray Binary V404 Cygni Is Part of a Wide Triple.” Nature. October 23, 2024.

Comments

Popular posts from this blog

Why did Homo sapiens outlast all other human species?

  From - Live Science By  Mindy Weisberger Edited by - Amal Udawatta Reproductions of skulls from a Neanderthal (left), Homo sapiens (middle) and Australopithecus afarensis (right)   (Image credit: WHPics, Paul Campbell, and Attie Gerber via Getty Images; collage by Marilyn Perkins) Modern humans ( Homo sapiens ) are the sole surviving representatives of the  human family tree , but we're the last sentence in an evolutionary story that began approximately 6 million years ago and spawned at least 18 species known collectively as hominins.  There were at least nine  Homo  species — including  H. sapiens  —  distributed around Africa, Europe and Asia by about 300,000 years ago, according to the Smithsonian's  National Museum of Nat ural History  in Washington, D.C. One by one, all except  H. sapiens  disappeared.  Neanderthals  and a  Homo  group known as the  Denisovans  lived alongside...

New Zealand loses first naval ship to sea since WW2

  Aleks Phillips   BBC New  ,   Michael Bristow,    BBC World Service Edited by - Amal Udawatta US Navy HMNZS Manawanui capsized after running aground off the coast of Samoa The Royal New Zealand Navy has lost its first ship to the sea since World War Two, after one of its vessels ran aground off the coast of Samoa. HMNZS Manawanui, a specialist diving and ocean imaging ship, came into trouble about one nautical mile from the island of Upolu on Saturday night local time, while conducting a survey of a reef. It later caught fire before capsizing. All 75 people on board were evacuated onto lifeboats and rescued early on Sunday, New Zealand's Defence Force said in a statement. Officials said the cause of the grounding was unknown and will be investigated. Reuters All 75 people on board have now safely been rescued The incident occurred during a bout of rough and windy weather. Military officials said rescuers "battled" currents and winds that pushed ...

Astronomers Find 21 “Dark” Neutron Stars Orbiting Sun-like Stars

  from - Sky & Telescope By Monica Young Edited by - Amal Udawatta New analysis has revealed 21 Sun-like stars in mutual orbit around dark objects of neutron star–like masses — rare systems that have escaped destruction by supernova. Most massive stars are born with at least one stellar sibling. But as the massive ones of these groups mature, they wreak havoc on their families. Yet astronomers have found some that have survived this tumult. Before exploding as a supernova, a massive star expands, sometimes engulfing any stellar companions. Or, even if the companion avoids being swallowed up, it may yet end up on its own: The supernova imparts a kick on the crushed core of the massive star, causing the newborn neutron star to escape the system. Many of the thousands of neutron stars known in the Milky Way are alone. But in a new analysis of data from the European Space Agency’s Gaia mission, Kareem El-Badry (Caltech) and colleagues have found 21 survivors: “dark” neutron stars i...