Skip to main content

Scientists pick up shock waves from colliding galaxies

 

By Pallab Ghosh
 BBC Science correspondent,
Edited by Amal Udawatta
Artist impression: The supermassive black holes at the heart of each galaxy spiral in on each other, sending gravitational shock waves across the UniverseIMAGE SOURCE,EPTA/STELIOS THOUKIDIDES
Image caption,
Artist impression: The supermassive black holes at the heart of each galaxy spiral in on each other, sending gravitational shock waves across the Universe.

Scientists have picked up shock waves from the orbit of supermassive black holes at the heart of distant galaxies as they begin to merge.

This may be the first direct evidence of giant black holes distorting space and time as they spiral in on each other.

The theory is that this is how galaxies grow. Now astronomers may soon be able to watch it happen.

These distortions are happening all the time, all across the Universe."

One of the groups that made the discovery is the European Pulsar Timing Array Consortium (EPTA), led by Prof Michael Kramer of the Max Planck Institute for Radio Astronomy in Bonn.

He told BBC News that the discovery had the potential to change astronomers' ideas about the cosmos forever.

"It could tell us if Einstein's theory of gravity is wrong; it may tell us about what dark matter and dark energy, the mysterious stuff that makes up the bulk of the Universe, really is; and it could give us a new window into new theories of physic

A real picture of the supermassive black hole at the heart of our own galaxyIMAGE SOURCE,EHT
Image caption,
A real picture of the supermassive black hole at the heart of our own galaxy

Further study might give new insights into the role supermassive black holes play in the evolution of all galaxies.

Dr Rebecca Bowler, of Manchester University, told BBC News that researchers believe there to be gigantic black holes at the heart of all galaxies and that that they grow over billions of years. But so far that has all been theoretical.

"We know supermassive black holes are there, we just don't know how they got there. One possibility is that smaller black holes merge, but there has been little observational evidence for this.

"But with these new observations we could see such a merger for the first time. And that directly will tell us how the most massive black holes form," she said.

The observations were made by studying signals from dead stars called pulsars. These rotate and send out bursts of radio signals at extremely precise intervals.

But researchers, which include astronomers from the Lovell Telescope at Jodrell Bank in Cheshire and from Birmingham University, have found that these signals are reaching Earth ever so slightly faster or slower than they should be. And they say the time distortion is consistent with gravitational waves created by the merger of supermassive black holes across the Universe.

The giant Lovell telescope at Jodrell BankIMAGE SOURCE,ROBERT BROOK/SCIENCE PHOTO LIBRARY
Image caption,
The giant Lovell dish was among the telescopes used to detect the shockwaves

Dr Stanislav Babak from Laboratory APC at CNRS, France, said gravitational waves carried information about ''some of the best-kept secrets of the Universe".

The newly found gravitational waves are different to the ones detected to date. Those earlier waves are caused by much smaller, star-sized black holes crashing into each other.

The type described in the latest research are thought to be from black holes that are hundreds of millions of times more massive, spiralling in on each other as they get ever closer.

Graphic showing how gravitational waves are measured

Their gravitational upheaval is so powerful that it distorts time and space - a process that can continue for billions of years until the supermassive black holes finally merge.

The gravitational waves scientists have discovered previously can be thought of as brief rumbles, whereas the new ones are akin to a background hum that is around us all the time.

Their next step is to take more readings and combine observations. As further progress is made, another goal is to be able to uncover individual pairs of supermassive black holes - assuming they are the source.

It's possible the gravitational waves could also be caused by other exciting phenomena, such as the very first black holes ever created, or exotic structures called cosmic strings, both of which can be thought of as seeds from which the Universe grew.

Artist impression of a pulsarIMAGE SOURCE,ARTUR PLAWGO / SCIENCE PHOTO LIBRARY
Image caption,
Artwork: Pulsars shoot out bursts of radio waves at precise intervals

What are gravitational waves?

Gravity is a constant force in our everyday lives. If you let go of a cup it falls and smashes on the ground each time you do so. But in space gravity does not stay the same. It can change if there is a sudden and catastrophic event - such as the collision of black holes.

The event is so cataclysmic that space and time itself is distorted and ripples are sent across the Universe - as happens when a pebble is dropped in a pond.

In the case of gravitational waves, everything in the Universe - the stars, planets and even us - are the water. Everything gets squeezed and stretched and then squashed and flattened ever so slightly as the ripples pass over us. And just like in a pond, the ripples quickly get smaller and disappear.

Graphic showing old and new gravitational waves

Gravitational waves from the merger of star-sized black holes were directly detected for the first time in 2015. Very sensitive laser systems measured the ripples produced in the end moments before the collision.

For the type of waves coming from the spiralling supermassive black holes, the pulsar approach is picking up the ripples produced in the billions of years before the final union.

This is akin to a continuous stream of pebbles being thrown into the pond. And because the mergers are happening all across space, the signal comes across as a cacophony.

The EPTA has combined results with a consortium in India (InPTA) and published their study results in the journal Astronomy and Astrophysics.

Three other separate, competing research groups, from North America (NANOGrav), Australia (PPTA) and China (CPTA), have published similar assessments, sparking huge excitement across the physics and astronomy community.

Scientists must first confirm their observations. None of the research groups have data that passes the gold standard of less than one in a million chance of error, which is generally required for conclusive proof - although combined, the various teams' results are certainly compelling.

Comments

Popular posts from this blog

Why did Homo sapiens outlast all other human species?

  From - Live Science By  Mindy Weisberger Edited by - Amal Udawatta Reproductions of skulls from a Neanderthal (left), Homo sapiens (middle) and Australopithecus afarensis (right)   (Image credit: WHPics, Paul Campbell, and Attie Gerber via Getty Images; collage by Marilyn Perkins) Modern humans ( Homo sapiens ) are the sole surviving representatives of the  human family tree , but we're the last sentence in an evolutionary story that began approximately 6 million years ago and spawned at least 18 species known collectively as hominins.  There were at least nine  Homo  species — including  H. sapiens  —  distributed around Africa, Europe and Asia by about 300,000 years ago, according to the Smithsonian's  National Museum of Nat ural History  in Washington, D.C. One by one, all except  H. sapiens  disappeared.  Neanderthals  and a  Homo  group known as the  Denisovans  lived alongside...

New Comet SWAN Now Visible in Small Scopes

     From :- Sky & Telescope  By :- Bob King  Edited by :- Amal Udawatta This spectacular image of Comet SWAN (C/2025 F2) was taken on April 6th and shows a bright, condensed coma 5′ across and dual ion tails. The longer one extends for 2° in PA 298° and the other 30′ in PA 303°. Details: 11"/ 2.2 RASA and QHY600 camera. Michael Jaeger Amateur astronomers have done it again — discovered a comet. Not by looking through a telescope but through close study of  publicly released, low-resolution images  taken by the  Solar Wind Anisotropies  (SWAN) camera on the orbiting  Solar and Heliospheric Observatory  (SOHO). On March 29th, Vladimir Bezugly of Ukraine was the first to report a moving object in SWAN photos taken the week prior. Michael Mattiazzo of Victoria, Australia, independently found "a pretty obvious comet" the same day using the same images, noting that the object was about 11th magnitude and appeared to be brightening. R...

The indigenous women saving India's endangered giant yams

  From BBC News   By-  Kamala Thiagarajan   Edited by - Amal Udawatta Sai Krishan, Thirunelly Tribal Special Intervention Programme Lakshmi and Shantha with a species of tuber locally called the Noorang (Credit: Sai Krishan, Thirunelly Tribal Special Intervention Programme) In a tribe in southern India, a group of women are working hard to revive the country's ancient native tubers, and bring them back into everyday culture. Lakshmi spends several hours each day digging out large lumpy and hairy yam tubers, starchy roots that grow below the soil. Some weigh an unwieldy 5kg (11lb) and are 4.5ft-long (1.4m), almost as tall as she is. It's painstaking work, says 58-year-old Lakshmi, who goes by one name. First, she has to cut out the thick shoot above the ground. Then, she uses shovels to dig up the earth around the buried stem and a paddle-like flat chisel to gently pry out the tuber. She uses her hands to dig the tuber out of the ground to avoid damaging its delicate...