Skip to main content

EXOPLANET NEWS: NO AIR ON VENUS TWIN, YOUNG JUPITER DISCOVERY

 

 From - Sky & Telescope,

 By - Monica Young,

Edited by - Amal Udawatta,

Artist's illo of airless TRAPPIST-1c and red dwarf star host in background
This artist’s concept shows what the hot rocky exoplanet TRAPPIST-1 c could look like.
NASA / ESA / CSA / Joseph Olmsted (STScI)

ANOTHER BLOW FOR ATMOSPHERES IN THE TRAPPIST-1 SYSTEM

Astronomers are using the James Webb Space Telescope (JWST) to take on the seven planets of the TRAPPIST-1 system, one by one. Observations have already showed the innermost world, TRAPPIST-1b, is airless. Now, new data suggest TRAPPIST-1c could at best host a thin carbon dioxide atmosphere, and it's still possible that c is just as bare as b.

The team, led by Sebastian Zieba (Max Planck Institute for Astronomy, Germany), watched TRAPPIST-1c pass behind its star using JWST's mid-infrared camera, capturing its dayside brightness at 15 microns — a wavelength that carbon dioxide molecules absorb.

“TRAPPIST-1 c is interesting because it’s basically a Venus twin: It’s about the same size as Venus and receives a similar amount of radiation from its host star as Venus gets from the Sun,” explains team member Kreidberg (also at Max Planck). “We thought it could have a thick carbon dioxide atmosphere like Venus.”
But the planet didn't appear particularly dim at 15 microns. Zieba, Kreidberg, and their team calculated a daytime temperature of 380 K (224F), which suggests that — if the planet has a carbon-dioxide-based atmosphere at all — it's thin, even thinner than the one on Mars.
Emission from TRAPPIST-1c
This graph compares the measured brightness of TRAPPIST-1 c to simulated brightness data for three different scenarios. The measurement (red diamond) is consistent with a bare rocky surface with no atmosphere (green line) or a very thin carbon dioxide atmosphere with no clouds (blue line).
NASA / ESA / CSA / Joseph Olmsted (STScI)

All seven of the TRAPPIST planets are Earth-size worlds, and they're good targets for JWST because the system is only 40 light-years away. However, the planets orbit a red dwarf star — one that's prone to emitting high-energy radiation now, and it was even more active in its youth. Since their discovery, astronomers cautioned that the planets might have had their atmospheres stripped away long ago. Upcoming observations will probe the viability of atmospheres on the system's outer worlds.

Read more about these results in Nature and in JWST's press release.

JUPITER'S YOUNGER SIBLING

Directly imaged planet appears as white blob that moves across two images
The movement of the extrasolar planet AF Lep b (white spot at about 10 o’clock) around its host star (center) can be seen in these two images taken in Dec. 2021 and Feb. 2023. Images were collected using the W. M. Keck Observatory’s 10-meter telescope in Hawaiʻi.
Kyle Franson ( University of Texas at Austin) / W. M. Keck Observatory

We can directly image exoplanets, but so far our ability to do so has been limited to young, massive, and far-out worlds. Now, astronomers have directly imaged one of the lowest-mass planets to date.

Named AF Leporis b, the planet is three times Jupiter’s mass and, at 8 astronomical units (8 a.u.), only a bit farther from its star than Jupiter is to the Sun. Jupiter’s “younger sibling” is circling a Sun-like star 87.5 light-years away.

Planets amenable to imaging carry three main qualities: Young planets still emit an infrared glow powered by the heat of their formation, and the more mass a planet has the more it will glow. Plus, the farther away it is from its brilliant host star, the easier it is to separate out its light using the technique of coronography. Advances in those techniques have enabled astronomers to pick out planets closer to their stars.

Kyle Franson and Brendan Bowler (both at University of Texas at Austin) took a closer look at stars likely to host planets, based on the way those stars “wiggled” on the sky over 25 years of observations from the Hipparcos and Gaia satellites. Then they used used the Keck II Telescope’s Near-Infrared Camera 2 Vector Vortex Coronagraph to capture the world. The team plans to follow up with JWST observations in order to characterize the giant's atmosphere.

Comments

Popular posts from this blog

Why did Homo sapiens outlast all other human species?

  From - Live Science By  Mindy Weisberger Edited by - Amal Udawatta Reproductions of skulls from a Neanderthal (left), Homo sapiens (middle) and Australopithecus afarensis (right)   (Image credit: WHPics, Paul Campbell, and Attie Gerber via Getty Images; collage by Marilyn Perkins) Modern humans ( Homo sapiens ) are the sole surviving representatives of the  human family tree , but we're the last sentence in an evolutionary story that began approximately 6 million years ago and spawned at least 18 species known collectively as hominins.  There were at least nine  Homo  species — including  H. sapiens  —  distributed around Africa, Europe and Asia by about 300,000 years ago, according to the Smithsonian's  National Museum of Nat ural History  in Washington, D.C. One by one, all except  H. sapiens  disappeared.  Neanderthals  and a  Homo  group known as the  Denisovans  lived alongside...

New Comet SWAN Now Visible in Small Scopes

     From :- Sky & Telescope  By :- Bob King  Edited by :- Amal Udawatta This spectacular image of Comet SWAN (C/2025 F2) was taken on April 6th and shows a bright, condensed coma 5′ across and dual ion tails. The longer one extends for 2° in PA 298° and the other 30′ in PA 303°. Details: 11"/ 2.2 RASA and QHY600 camera. Michael Jaeger Amateur astronomers have done it again — discovered a comet. Not by looking through a telescope but through close study of  publicly released, low-resolution images  taken by the  Solar Wind Anisotropies  (SWAN) camera on the orbiting  Solar and Heliospheric Observatory  (SOHO). On March 29th, Vladimir Bezugly of Ukraine was the first to report a moving object in SWAN photos taken the week prior. Michael Mattiazzo of Victoria, Australia, independently found "a pretty obvious comet" the same day using the same images, noting that the object was about 11th magnitude and appeared to be brightening. R...

The indigenous women saving India's endangered giant yams

  From BBC News   By-  Kamala Thiagarajan   Edited by - Amal Udawatta Sai Krishan, Thirunelly Tribal Special Intervention Programme Lakshmi and Shantha with a species of tuber locally called the Noorang (Credit: Sai Krishan, Thirunelly Tribal Special Intervention Programme) In a tribe in southern India, a group of women are working hard to revive the country's ancient native tubers, and bring them back into everyday culture. Lakshmi spends several hours each day digging out large lumpy and hairy yam tubers, starchy roots that grow below the soil. Some weigh an unwieldy 5kg (11lb) and are 4.5ft-long (1.4m), almost as tall as she is. It's painstaking work, says 58-year-old Lakshmi, who goes by one name. First, she has to cut out the thick shoot above the ground. Then, she uses shovels to dig up the earth around the buried stem and a paddle-like flat chisel to gently pry out the tuber. She uses her hands to dig the tuber out of the ground to avoid damaging its delicate...