Skip to main content

Euclid: Europe's 'dark explorer' telescope launches

    By Jonathan Amos

   BBC Science Correspondent,

   Edited  by - Amal Udawatta,














A European space telescope has launched from Florida on a quest to resolve one of the biggest questions in science: What is the Universe made of?

The Euclid mission will make an immense 3D map of the cosmos in an effort to tie down some of the properties of so-called dark matter and dark energy.

Together, these phenomena appear to control the shape and expansion of everything we see out there.

Researchers concede, however, they know virtually nothing about them.

Neither dark matter nor dark energy are directly detectable.

This big gap in knowledge meant we couldn't really explain our origins, said Prof Isobel Hook.

Euclid's insights will be our best bet to get on to a path of understanding, the astronomer at the UK's Lancaster University believes.

"It will be like setting off on a ship before people knew where land was in different directions. We'll be mapping out the Universe to try to understand where we fit into it and how we've got here - how the whole Universe got from the point of the Big Bang to the beautiful galaxies we see around us, the Solar System and to life," she told BBC News.

The €1.4bn (£1.2bn) Euclid telescope went up on a Falcon-9 rocket from Cape Canaveral at 11:12 local time (15:12 GMT/16:12 BST).

Euclid has been despatched to an observing position about 1.5 million km from Earth, on the opposite side of the planet to the Sun.

Although primarily a European Space Agency (Esa) project, the mission has significant scientific and engineering inputs from the US space agency (Nasa) as well.

Artwork of Hubble mapIMAGE SOURCE,NASA/ESA/R.MASSEY/CALTECH
Image caption,
Artwork: The Hubble telescope mapped dark matter's presence over a tiny volume of sky

How will Euclid probe the dark cosmos?

Previous experiments have suggested dark energy accounts for about 70% of all the energy in the Universe; dark matter about 25%; with all the visible material - the stars, gas, dust, planets, us - accounting for the remaining 5%.

To untangle the nature of the mysterious 95%, Euclid will conduct a six-year, two-pronged survey.

A key task will be to map the distribution of dark matter, the matter that cannot be detected directly but which astronomers know to be there because of its gravitational effects on the matter we can see.

Galaxies, for example, could not hold their shape were it not for the presence of some additional "scaffolding". This is presumed to be dark matter - whatever that is.

Although this material cannot be seen directly, the telescope can plot its distribution by looking for the subtle way its mass distorts the light coming from distant galaxies. The Hubble Space Telescope famously first did this for a tiny patch on the sky - just two square degrees.

Euclid will do it across 15,000 square degrees of sky - a little over a third of the heavens.

VIS cameraIMAGE SOURCE,CEA
Image caption,
The VIS is one of the largest camera instruments ever sent into space

Central to all this will be the telescope's VIS, or visible, camera, whose development was led from the UK.

"The images it will produce will be huge," said Prof Mark Cropper from UCL's Mullard Space Science Laboratory. "You'd need more than 300 high-definition TVs to actually display just one image."

Dark energy is a very different concept from dark matter.

This mysterious "force" appears to be accelerating the expansion of the Universe. Recognition of its existence and effect in 1998 earned three scientists a Nobel Prize.

Euclid will investigate the phenomenon by mapping the three-dimensional distribution of galaxies.

The patterns in the great voids that exist between these objects can be used as a kind of "yardstick" to measure the expansion through time.

Again, ground-based surveys have done this for small volumes of the sky; Euclid however will measure the precise positions of some two billion galaxies out to about 10 billion light-years from Earth.

"We can then ask some interesting questions," says Prof Bob Nichol from Surrey University.

"Is the acceleration the same in all points in the Universe? Today, we kind of average everything we measure. But what if the acceleration over there isn't the same as over here? That would be discovery science," he told BBC News.

ImagesIMAGE SOURCE,NASA/ESA/CSA/STSCI
Image caption,
All parts of the cosmos are receding from us at an accelerating rate

Euclid won't be able to say definitively "this is the nature of dark matter and dark energy", but what it should do is narrow the scope of the models and ideas that flood current thinking. It will focus the attention of theorists and experimentalists.

For example, it might introduce some fresh thinking on how to detect the particles presently thought to represent much of dark matter. All searches to date have come up empty.

And as for dark energy, Euclid may tell scientists that, far from being some intrinsic property of the vacuum of space - their current best guess - this unknown force has a better explanation in a modified theory of gravity. This too would be discovery science.

"One possibility is that dark energy is actually a fifth force, a new force in the Universe that operates only on huge scales, so it doesn't influence life here on Earth," said Prof Mark McCaughrean, Esa's senior advisor for science and exploration.

"But, of course, it could enormously influence the fate of our Universe - how far is it going to expand? Is it going to go on accelerating for ever, just getting bigger and bigger? Or perhaps it will all collapse back down again."

EuclidIMAGE SOURCE,TAS
Image caption,
Artwork: Euclid has been given six years to assemble its 3D map of one-third of the sky

Comments

Popular posts from this blog

Why did Homo sapiens outlast all other human species?

  From - Live Science By  Mindy Weisberger Edited by - Amal Udawatta Reproductions of skulls from a Neanderthal (left), Homo sapiens (middle) and Australopithecus afarensis (right)   (Image credit: WHPics, Paul Campbell, and Attie Gerber via Getty Images; collage by Marilyn Perkins) Modern humans ( Homo sapiens ) are the sole surviving representatives of the  human family tree , but we're the last sentence in an evolutionary story that began approximately 6 million years ago and spawned at least 18 species known collectively as hominins.  There were at least nine  Homo  species — including  H. sapiens  —  distributed around Africa, Europe and Asia by about 300,000 years ago, according to the Smithsonian's  National Museum of Nat ural History  in Washington, D.C. One by one, all except  H. sapiens  disappeared.  Neanderthals  and a  Homo  group known as the  Denisovans  lived alongside  H. sapiens  for thousands of years, and they even interbred, as evidenced by bits of their DN

New Zealand loses first naval ship to sea since WW2

  Aleks Phillips   BBC New  ,   Michael Bristow,    BBC World Service Edited by - Amal Udawatta US Navy HMNZS Manawanui capsized after running aground off the coast of Samoa The Royal New Zealand Navy has lost its first ship to the sea since World War Two, after one of its vessels ran aground off the coast of Samoa. HMNZS Manawanui, a specialist diving and ocean imaging ship, came into trouble about one nautical mile from the island of Upolu on Saturday night local time, while conducting a survey of a reef. It later caught fire before capsizing. All 75 people on board were evacuated onto lifeboats and rescued early on Sunday, New Zealand's Defence Force said in a statement. Officials said the cause of the grounding was unknown and will be investigated. Reuters All 75 people on board have now safely been rescued The incident occurred during a bout of rough and windy weather. Military officials said rescuers "battled" currents and winds that pushed life rafts and sea boats

Astronomers Find 21 “Dark” Neutron Stars Orbiting Sun-like Stars

  from - Sky & Telescope By Monica Young Edited by - Amal Udawatta New analysis has revealed 21 Sun-like stars in mutual orbit around dark objects of neutron star–like masses — rare systems that have escaped destruction by supernova. Most massive stars are born with at least one stellar sibling. But as the massive ones of these groups mature, they wreak havoc on their families. Yet astronomers have found some that have survived this tumult. Before exploding as a supernova, a massive star expands, sometimes engulfing any stellar companions. Or, even if the companion avoids being swallowed up, it may yet end up on its own: The supernova imparts a kick on the crushed core of the massive star, causing the newborn neutron star to escape the system. Many of the thousands of neutron stars known in the Milky Way are alone. But in a new analysis of data from the European Space Agency’s Gaia mission, Kareem El-Badry (Caltech) and colleagues have found 21 survivors: “dark” neutron stars in mu