Skip to main content

ASTRONOMY IN PICTURES: SATURN AND THE MILKY WAY

 

From-  Sky &  Telescope,

By  - Monica Young, 

Edited by - Amal Udawatta,

Saturn system in infrared light
JWST's near-infrared camera captured this image of Saturn and some of its moons on June 25, 2023. In this monochrome image, NIRCam filter F323N (3.23 microns) was color mapped with an orange hue.
NASA / ESA / CSA / STScI / M. Tiscareno (SETI Institute) / M. Hedman (University of Idaho) / M. El Moutamid (Cornell University) / M. Showalter (SETI Institute) / L. Fletcher (University of Leicester) / H. Hammel (AURA); Image processing: J. DePasquale (STScI)

The James Webb Space Telescope offers a new view of Saturn, while the Ice Cube Observatory has returned a neutrino-painted picture of the Milky Way.

SATURN'S RINGSHINE


This near-infrared James Webb Space Telescope (JWST) image of the Saturn system sheds light on the objects' composition: Saturn is dark in this image because methane in its upper atmosphere absorbs infrared light at a wavelength of 3.23 microns. The icy rings, however, are unpolluted by methane and therefore remain bright.

The methane-absorbing wavelength doesn't pick up the stripes typical to Saturn photographs, which come from layering deeper inside the atmosphere. However, it does show expected seasonal differences between the northern and southern hemispheres; the northern hemisphere is experiencing summertime, while the southern hemisphere is emerging from darkness at the end of a winter. The darkness of the north pole is somewhat unexpected, though. Likewise, the surprising brightening at the limb suggests that methane also emits light (fluoresces) at high altitudes.

This image was taken as part of a program to investigate the Saturn system, including its rings and its moons. The fainter G and E rings are subjects of deeper exposures not shown in Webb's recent press release.

Read more about this image in the JWST press release. Research studies on these data will be forthcoming.

NEUTRINOS PAINT PICTURE OF THE MILKY WAY

Neutrino picture of Milky Way
This portrait of the Milky Way combines visible light and neutrino emissions (in blue).
IceCube Collaboration / U.S. National Science Foundation (Lily Le & Shawn Johnson) / ESO (S. Brunier)

Our galaxy is home to asteroids, planets, stars, and dusty, star-forming clouds. It also hosts an exotic ecosystem of speeding charged particles known as cosmic rays, tangled magnetic fields, and teeny-tiny neutral particles called neutrinos.

Neutrinos are particularly ghost-like, making them difficult to detect. We've only recently begun to find astrophysical neutrinos using the IceCube Neutrino Observatory, which consists of more than 5,000 sensors set beneath the Antarctic ice. Ice Cube looks for the rare neutrinos that collide with our atmosphere, creating a cascade of charged particles. Ten years of observations yielded 60,000 high-energy neutrinos, of which 4,200 are astrophysical in origin. These neutrinos all cluster along the galactic plane, indicating they come from our galaxy.

Two images of the Milky Way galaxy show visible light (top) and neutrinos (bottom).
IceCube Collaboration / U.S. National Science Foundation (Lily Le & Shawn Johnson) / ESO (S. Brunier)

The detection is at a level of 4.5-sigma, equivalent to a 1 in 150,000 chance that the result is a statistical fluke. That doesn't quite reach the 5-sigma threshold that defines a physical detection, but astronomers had expected to find these neutrinos, so there's little reason to doubt the result. Previous observations from space telescopes had shown gamma rays coming from along the galactic plane. Cosmic rays spiraling along magnetic field lines collide to produce these gamma rays, and that process ought to make neutrinos, too.

Comments

Popular posts from this blog

Why did Homo sapiens outlast all other human species?

  From - Live Science By  Mindy Weisberger Edited by - Amal Udawatta Reproductions of skulls from a Neanderthal (left), Homo sapiens (middle) and Australopithecus afarensis (right)   (Image credit: WHPics, Paul Campbell, and Attie Gerber via Getty Images; collage by Marilyn Perkins) Modern humans ( Homo sapiens ) are the sole surviving representatives of the  human family tree , but we're the last sentence in an evolutionary story that began approximately 6 million years ago and spawned at least 18 species known collectively as hominins.  There were at least nine  Homo  species — including  H. sapiens  —  distributed around Africa, Europe and Asia by about 300,000 years ago, according to the Smithsonian's  National Museum of Nat ural History  in Washington, D.C. One by one, all except  H. sapiens  disappeared.  Neanderthals  and a  Homo  group known as the  Denisovans  lived alongside  H. sapiens  for thousands of years, and they even interbred, as evidenced by bits of their DN

New Zealand loses first naval ship to sea since WW2

  Aleks Phillips   BBC New  ,   Michael Bristow,    BBC World Service Edited by - Amal Udawatta US Navy HMNZS Manawanui capsized after running aground off the coast of Samoa The Royal New Zealand Navy has lost its first ship to the sea since World War Two, after one of its vessels ran aground off the coast of Samoa. HMNZS Manawanui, a specialist diving and ocean imaging ship, came into trouble about one nautical mile from the island of Upolu on Saturday night local time, while conducting a survey of a reef. It later caught fire before capsizing. All 75 people on board were evacuated onto lifeboats and rescued early on Sunday, New Zealand's Defence Force said in a statement. Officials said the cause of the grounding was unknown and will be investigated. Reuters All 75 people on board have now safely been rescued The incident occurred during a bout of rough and windy weather. Military officials said rescuers "battled" currents and winds that pushed life rafts and sea boats

Astronomers Find 21 “Dark” Neutron Stars Orbiting Sun-like Stars

  from - Sky & Telescope By Monica Young Edited by - Amal Udawatta New analysis has revealed 21 Sun-like stars in mutual orbit around dark objects of neutron star–like masses — rare systems that have escaped destruction by supernova. Most massive stars are born with at least one stellar sibling. But as the massive ones of these groups mature, they wreak havoc on their families. Yet astronomers have found some that have survived this tumult. Before exploding as a supernova, a massive star expands, sometimes engulfing any stellar companions. Or, even if the companion avoids being swallowed up, it may yet end up on its own: The supernova imparts a kick on the crushed core of the massive star, causing the newborn neutron star to escape the system. Many of the thousands of neutron stars known in the Milky Way are alone. But in a new analysis of data from the European Space Agency’s Gaia mission, Kareem El-Badry (Caltech) and colleagues have found 21 survivors: “dark” neutron stars in mu