Skip to main content

EVEN LONELY BLACK HOLES NEED TO EAT

 From- Sky & Telescope

 By - Monica Young

 Edited by -Amal Udawatta

Artist's impression of AGN
In this illustration of an active galactic nuclei, the black hole at the center isn't visible, but the disk of gas around it is. Many such black holes also power jets of light and plasma, shown here in white and blue.
ESO / M. Kornmesser and L. Calçada

Astronomers have found supermassive black holes in smaller galaxies are actually more likely to light up when they’re isolated in vast, cosmic voids.


There are immense regions of space that are mostly — but not entirely — empty. Less than a fifth of all galaxies reside within these cosmic voids; most galaxies crowd together along the densely bubble-like walls around them. But it is the isolated galaxies that offer a window on uninterrupted galaxy growth and evolution.

While galaxies along the void walls dance gravitational tangoes with one another, lonely void galaxies evolve without outside interference, as do the supermassive black holes that lurk in their cores. Fewer galactic collisions can mean slower growth, with less fresh gas for fueling star formation — and for feeding the central black holes.

Yet in a new study, Anish Aradhey, who just graduated from Harrisonburg High School, and Anca Constantin, a professor of astrophysics at James Madison University, show that isolation doesn’t mean behemoth black holes of void galaxies go hungry. Instead, the duo found that, at least among the void galaxies smaller than the Milky Way, black holes may have larger meals than they do in galaxies lining void walls.

Aradhey started his search with 290,000 galaxies plucked from the Sloan Digital Sky Survey. He then looked for those galaxies in series of images from the Wide-field Infrared Survey Explorer (WISE), picking out those that were flickering at infrared wavelengths. Aradhey found more than 20,000 flickering galaxies that previous studies had missed.

In a single image, the glow of new stars and the veil of dust they produce can obscure a central, supermassive black hole. But the twinkling in WISE’s image series come not from starlight but from the tempestuous swirls of gas as they flow into the central maw. If a black hole is feeding, WISE is more likely to see it. Astronomers call such feeding black holes active galactic nuclei (AGN).

Aradhey mapped out these galaxies, determining whether or not they lie in a cosmic void. He found, despite the isolation of the voids, that they were actually more likely to host AGN. But that was only true for the smaller galaxies. Milky Way–size galaxies and larger instead tend to be more active if they’re in crowded regions.

Purple bubbles fill the image, with black points crowded along their outlines and a few scattered red points inside
A map of the nearby universe shows bubble-like voids in purple. Most galaxies line the walls of these voids (black points), while some galaxies have more lonely existences inside voids (red points).
Anish Aradhey

In some sense, this is expected. Long ago, the universe was a crowded place, and galaxies merged into bigger ones, sparkling with new stars and active black holes, before star formation ceased and galaxies faded to quiescence. But even as the largest galaxies retired, the midsize galaxies continued to grow, and so on. A similar process could be at work within voids, but with fewer galactic collisions to keep things humming along.

“Our study provides additional evidence for previous findings that the life cycles of active galaxies are delayed/slowed in voids,” Aradhey says.

In another sense, the result contradicts ideas about the role of galaxy mergers in evolution. “This [result] does challenge past findings that galaxy interactions and mergers encourage AGN activity,” Aradhey adds. While galactic mergers and other interactions can encourage gas to flow into a galaxy’s central black hole, they’re apparently not necessary.

Ryan Hickox (Dartmouth College), who studies active galaxies but was not involved in the study, speculates that the lack of competition may even be beneficial. “It may be that low-mass galaxies in voids have had less interaction with other galaxies that would strip or disrupt their gas, and so there is more fuel to power accretion in those systems,” he says.  

This work, presented at the 242nd meeting of the American Astronomical Society, isn’t published yet, though a paper is forthcoming. Nevertheless, Aradhey suggests that it could already be tested: “Simulations of dark matter halos and correlations with the properties of their inhabiting galaxies should be able to address these ideas.”

Comments

Popular posts from this blog

Big freeze drove early humans out of Europe

 From BBC News,   By Pallab Ghosh-   Science correspondent, Edited by - Amal Udawatta, IMAGE SOURCE, PHILIPPE PSAILA/SCIENCE PHOTO LIBRARY Image caption, Remains of a primitive human species known as Homo erectus have been found in Europe dating back to 1.4 million years ago. A big freeze previously unknown to science drove early humans from Europe for 200,000 years, but they adapted and returned, new research shows. Ocean sediments from 1.1 million years ago show temperatures suddenly dropped more than 5C, scientists say. They say our early ancestors couldn't have survived as they didn't have heating or warm clothes. Until now, the consensus had been that humans had existed in Europe continuously for 1.5 million years. Ancient humans' stone tools found in Kenya Ancient human remains found in County Armagh Ancient humans survived longer than we thought Evidence for the big freeze is found in sediments in the seabed off the coast of Lisbon, Portugal. Layers are deposited eac

Email (required) * Constant Contact Use. Comet Nishimura swings by for binoculars and telescopes

 From - Sky & Tellescope, By - Alan Macrobert, Edited by - Amal Udawatta Comet Nishimura on the morning of September 5th, on its way in. The comet is the green bit at left. The star cluster at upper right is the Beehive. The brilliant light at lower right is Venus. Right-click image to open higher-res version in new tab. Michael Jäger took this view "from my observatory in Martinsberg, Lower Austria." It's a stack of eight 30-second exposures he made using a DSLR camera with a 50-mm lens at f/2.5. Comet Nishimura swings by for binoculars and telescopes.  Comet Nishimura (2023 P1), discovered just last month, is brightening toward its September 17th perihelion. The comet starts this week very low in the dawn sky. You'll need a low view to the east-northeast on the mornings of September 9th, 10th, and maybe 11th. The farther north you live the better. The waning crescent Moon won't pose interference. By the 13th or 14th the comet shifts to the low  evening  sky,

INDIA’S CHANDRAYAAN 3 LANDS ON THE MOON; RUSSIA'S LUNA 25 CRASHES

   From - Sky & Telescope   By - David Dikinson,   Edited  by - Amal Udawatta,          The first surface image received from Chandrayaan 3.             ISRO In a first for the nation, India’s Chandrayaan 3 soft-landed in the lunar south pole region of the Moon. Russia’s Luna 25 lander crashed, however. Today was a “historic day for India’s space sector,” says India’s prime minister, Narendra Modi, on   X , formerly known as Twitter. "Congratulations to ISRO for the remarkable success of Chandrayaan 3 lunar mission.” The landing occurred near Manzinus U Crater on the lunar nearside at 12:34 Universal Time (UT) (8:34 a.m. Eastern Daylight Time, or EDT) on Wednesday, August 23rd. This makes India the fourth nation to soft-land on the Moon, after the United States, the former Soviet Union, and China. ESA’s European Space Tracking system (ESTRACK) and NASA’s Deep Space Network (DSN) partnered with ISRO to provide global tracking coverage for Chandrayaan 3. A cheering mission contr