Skip to main content

WATCH THE MILKY WAY’S BLACK HOLE SPAGHETTIFY A CLOUD

 From - Sky & Telescope,

By - Monika Young

Edited by - Amal Udawatta,

series of square images showing fuzzy cloud elongating over time
These "postage stamp" images (each 1 arcsecond wide) were captured with Keck Observatory’s NIRC2 instrument and adaptive optic. They show X7’s motion and elongation between 2002 and 2021. Sgr A*'s position is marked with a black "X" in the top right panel.
A. Ciurlo et al. / UCLA GCOI / W. M. Keck Observatory

Two decades of observations show a dusty gas cloud elongating as it approaches our galaxy’s supermassive black hole.

If you’ve ever wondered what it’s like to fall into a black hole, a dusty gas cloud in the galactic center can give you an idea. Observations of the cloud dating back to 2002 show it’s coming apart in the presence of the supermassive behemoth residing there.

That black hole, called Sgr A*, exerts tidal forces on any objects nearby, pulling harder on the nearer side than on the farther side, and stretching — or spaghettifying — them in the process. The extent of the black hole’s effects depends on the density of the object itself: A cloud will stretch like taffy while a star is less easily torn apart.

Astronomers have picked out one particular cloud, dubbed X7, in images of the galactic center taken over the past two decades. Using the adaptive optics system on the Keck I telescope atop Mauna Kea, Hawai‘i, they’ve watched the cloud move in its orbit. Spectroscopic data, which gives additional information about the cloud’s movements, started in 2006.

By combining these measurements, Anna Ciurlo (University of California, Los Angeles) and colleagues show in the February 20th Astrophysical Journal that X7 is on its way toward the black hole. It will pass within some 3,200 astronomical units (a.u.; 18 light-days) of Sgr A* in 2036. Already, the cloud is stretching out: it’s now nine times as long as it is wide.


The fact that X7 won’t survive its upcoming pass puts a limit on its age. Its orbit is only 170 years long, so the cloud can’t be more than that many years old. Ciurlo’s team therefore suggests that the gas was ejected recently when a pair of stars collided.

That scenario has support in the form of another dusty object, this one known as G3. The so-called G objects are thought to be stars so cocooned in dust that the dust is all we can see. One of these, dubbed G2, survived a pass within just 200 a.u. of Sgr A* in 2014, though not without the loss of some of its dusty shroud. That inward-spiraling material might have been responsible for a series of flares seen from Sgr A* five years later.

G3 is another of these objects, with an orbit surprisingly similar to X7’s. If G3 is the result of a stellar merger, then X7 might represent the dust and gas thrown out during that violent event.

“I agree with Anna and team’s conclusion,” says Stefan Gillessen (Max Planck Institute for Extraterrestrial Physics, Germany), who has studied the galactic center extensively but wasn’t involved in the new study. “It is a very nice work!”

“I am not surprised to see lumps of gas of various sizes in the galactic center,” Gillessen adds. “Actually, this type of gas may well be what is responsible for feeding Sgr A* currently.”

Ultimately, as X7 swings down into the deep of the black hole’s gravitational field, the cloud will come apart. But whether we’ll see the supermassive black hole feed on the 50 Earths’ worth of mass the cloud currently contains remains to be seen. That’s in part because astronomers still aren’t sure how long material takes to flow into the dark maw.

“For sure we will see how X7 is torn apart by the black hole,” Ciurlo says. “After that, who knows? We’ll be watching!

Comments

Popular posts from this blog

Why did Homo sapiens outlast all other human species?

  From - Live Science By  Mindy Weisberger Edited by - Amal Udawatta Reproductions of skulls from a Neanderthal (left), Homo sapiens (middle) and Australopithecus afarensis (right)   (Image credit: WHPics, Paul Campbell, and Attie Gerber via Getty Images; collage by Marilyn Perkins) Modern humans ( Homo sapiens ) are the sole surviving representatives of the  human family tree , but we're the last sentence in an evolutionary story that began approximately 6 million years ago and spawned at least 18 species known collectively as hominins.  There were at least nine  Homo  species — including  H. sapiens  —  distributed around Africa, Europe and Asia by about 300,000 years ago, according to the Smithsonian's  National Museum of Nat ural History  in Washington, D.C. One by one, all except  H. sapiens  disappeared.  Neanderthals  and a  Homo  group known as the  Denisovans  lived alongside...

New Zealand loses first naval ship to sea since WW2

  Aleks Phillips   BBC New  ,   Michael Bristow,    BBC World Service Edited by - Amal Udawatta US Navy HMNZS Manawanui capsized after running aground off the coast of Samoa The Royal New Zealand Navy has lost its first ship to the sea since World War Two, after one of its vessels ran aground off the coast of Samoa. HMNZS Manawanui, a specialist diving and ocean imaging ship, came into trouble about one nautical mile from the island of Upolu on Saturday night local time, while conducting a survey of a reef. It later caught fire before capsizing. All 75 people on board were evacuated onto lifeboats and rescued early on Sunday, New Zealand's Defence Force said in a statement. Officials said the cause of the grounding was unknown and will be investigated. Reuters All 75 people on board have now safely been rescued The incident occurred during a bout of rough and windy weather. Military officials said rescuers "battled" currents and winds that pushed ...

Astronomers Find 21 “Dark” Neutron Stars Orbiting Sun-like Stars

  from - Sky & Telescope By Monica Young Edited by - Amal Udawatta New analysis has revealed 21 Sun-like stars in mutual orbit around dark objects of neutron star–like masses — rare systems that have escaped destruction by supernova. Most massive stars are born with at least one stellar sibling. But as the massive ones of these groups mature, they wreak havoc on their families. Yet astronomers have found some that have survived this tumult. Before exploding as a supernova, a massive star expands, sometimes engulfing any stellar companions. Or, even if the companion avoids being swallowed up, it may yet end up on its own: The supernova imparts a kick on the crushed core of the massive star, causing the newborn neutron star to escape the system. Many of the thousands of neutron stars known in the Milky Way are alone. But in a new analysis of data from the European Space Agency’s Gaia mission, Kareem El-Badry (Caltech) and colleagues have found 21 survivors: “dark” neutron stars i...