Skip to main content

DO DIAMONDS RAIN ON THE ICE GIANTS?

 

From - Sky & Telescope,

By - Elise Cutts,

Edited by - Amal Udawatta,

Cool blue world


    In 2005 astronomers used the Hubble Space Telescope to photograph the delicate ring system of Uranus, as well as a                    southern collar of clouds and a bright, discrete cloud in the northern hemisphere.

     NASA / ESA / M. Showalter (SETI Institute)


New research shows diamonds might condense out of Neptune’s mantle, but not Uranus’, explaining a decades-old discrepancy.

Below the frosty hydrogen-helium atmospheres of Neptune and Uranus lie fluid mantles rich in water, ammonia, methane, and possibly something far more dazzling: diamonds. Scientists have long suspected these dense gems might rain out of the ice giants’ mantles and into their rocky cores.

However, Uranus’ interior might not be as glitzy as previously thought. Theoretical results published February 27th in Nature Communications suggest that while ideal diamond-forming conditions could occur within Neptune’s mantle, they might not exist on Uranus. But the ice giants’ interiors are still so mysterious that confidently forecasting diamond drizzles on either world will have to wait for future missions to the outer solar system, other researchers say.

“Planets with the mass of Uranus and Neptune seem to be quite common in the in the galaxy,” says Ravit Helled (University of Zurich), who wasn’t involved in the study. Understanding what goes on inside the ice giants, she adds, is “very important for the characterization of exoplanets, as well as our understanding of our own origin.”

DIAMONDS IN THE SKY?

After the Voyager 2 flybys in the 1980s, scientists noticed that Neptune glows with its own internal heat, while Uranus only throws back the energy it receives from the Sun. They’ve been struggling to explain the difference ever since.

“The name of the game for these planets for the past [decades] has been trying to think about why are they actually different, because they look so similar,” says Jonathan Fortney (University of California, Santa Cruz), who also wasn’t involved in the study.

The new study, led by Bingqing Cheng (Institute of Science And Technology Austria), suggests that diamond rain could be a piece of this puzzle. As the gemstones fall through the mantle, they would release gravitational energy as heat. Although less dramatic than an asteroid burning up in our atmosphere, the principle is similar. Meteorites (or diamonds) rub against whatever medium they’re falling through, and this friction releases heat.

When Cheng’s team calculated the “freezing point” of carbon under conditions like those within Neptune and Uranus, they discovered that there’s a narrow band of temperatures and pressures ideal for forming diamonds. Under these conditions, carbon and hydrogen separate from one another, concentrating carbon into a carbon-rich fluid that’s perfect for forming diamonds. This concentrated fluid can freeze out as diamond rain.

Cheng and colleagues suggest that while this diamond weather is possible on Neptune, the conditions aren’t right for it on Uranus. If true, this could help explain the planet’s mysteriously dim glow compared to its farther-out sibling.

Comments

Popular posts from this blog

Why did Homo sapiens outlast all other human species?

  From - Live Science By  Mindy Weisberger Edited by - Amal Udawatta Reproductions of skulls from a Neanderthal (left), Homo sapiens (middle) and Australopithecus afarensis (right)   (Image credit: WHPics, Paul Campbell, and Attie Gerber via Getty Images; collage by Marilyn Perkins) Modern humans ( Homo sapiens ) are the sole surviving representatives of the  human family tree , but we're the last sentence in an evolutionary story that began approximately 6 million years ago and spawned at least 18 species known collectively as hominins.  There were at least nine  Homo  species — including  H. sapiens  —  distributed around Africa, Europe and Asia by about 300,000 years ago, according to the Smithsonian's  National Museum of Nat ural History  in Washington, D.C. One by one, all except  H. sapiens  disappeared.  Neanderthals  and a  Homo  group known as the  Denisovans  lived alongside...

New Comet SWAN Now Visible in Small Scopes

     From :- Sky & Telescope  By :- Bob King  Edited by :- Amal Udawatta This spectacular image of Comet SWAN (C/2025 F2) was taken on April 6th and shows a bright, condensed coma 5′ across and dual ion tails. The longer one extends for 2° in PA 298° and the other 30′ in PA 303°. Details: 11"/ 2.2 RASA and QHY600 camera. Michael Jaeger Amateur astronomers have done it again — discovered a comet. Not by looking through a telescope but through close study of  publicly released, low-resolution images  taken by the  Solar Wind Anisotropies  (SWAN) camera on the orbiting  Solar and Heliospheric Observatory  (SOHO). On March 29th, Vladimir Bezugly of Ukraine was the first to report a moving object in SWAN photos taken the week prior. Michael Mattiazzo of Victoria, Australia, independently found "a pretty obvious comet" the same day using the same images, noting that the object was about 11th magnitude and appeared to be brightening. R...

The last lunar eclipse of the year will be visible in Sri Lanka

                                                                             "blood moon." Amal Udawatta The final lunar eclipse of 2025 is scheduled to take place on the night of September 7. This lunar eclipse is significant because over seventy-seven percent (77%) of the world's population will be able to see it. If you are in Asia, Australia, Africa, or Europe, you will have the opportunity to witness this eclipse. According to the provided map, the countries highlighted in red and black will experience a total lunar eclipse. Residents in these areas will be able to view every phase of the eclipse from beginning to end. Since Sri Lanka is located within this range, it will also have a clear view of the total lunar eclipse. The Saros number for this total lunar eclipse is 128, and its total d...