Skip to main content

Why some people are mosquito magnets

 Source:  From  - Rockefeller University,

 Edited by-  Amal Udawatta,



Close-up of a mosquito (stock image).
Credit: © corlaffra / stock.adobe.com

It's impossible to hide from a female mosquito -- she will hunt down any member of the human species by tracking our CO2 exhalations, body heat, and body odor. But some of us are distinct "mosquito magnets" who get more than our fair share of bites. Blood type, blood sugar level, consuming garlic or bananas, being a woman, and being a child are all popular theories for why someone might be a preferred snack. Yet for most of them, there is little credible data, says Leslie Vosshall, head of Rockefeller's Laboratory of Neurogenetics and Behavior.

This is why Vosshall and Maria Elena De Obaldia, a former postdoc in her lab, set out to explore the leading theory to explain varying mosquito appeal: individual odor variations connected to skin microbiota. They recently demonstrated through a study that fatty acids emanating from the skin may create a heady perfume that mosquitoes can't resist. They published their results in Cell.

"There's a very, very strong association between having large quantities of these fatty acids on your skin and being a mosquito magnet," says Vosshall, the Robin Chemers Neustein Professor at The Rockefeller University and Chief Scientific Officer of the Howard Hughes Medical Institute.

A tournament no one wants to win

In the three-year study, eight participants were asked to wear nylon stockings over their forearms for six hours a day. They repeated this process on multiple days. Over the next few years, the researchers tested the nylons against each other in all possible pairings through a round-robin style "tournament." They used a two-choice olfactometer assay that De Obaldia built, consisting of a plexiglass chamber divided into two tubes, each ending in a box that held a stocking. They placed Aedes Aegypti mosquitoes -- the primary vector species for Zika, dengue, yellow fever, and chikungunya -- in the main chamber and observed as the insects flew down the tubes towards one nylon or the other.

By far the most compelling target for Aedes aegypti was Subject 33, who was four times more attractive to the mosquitoes than the next most-attractive study participant, and an astonishing 100 times more appealing than the least attractive, Subject 19.

The samples in the trials were de-identified, so the experimenters didn't know which participant had worn which nylon. Still, they would notice that something unusual was afoot in any trial involving Subject 33, because insects would swarm towards that sample. "It would be obvious within a few seconds of starting the assay," says De Obaldia. "It's the type of thing that gets me really excited as a scientist. This is something real. This is not splitting hairs. This is a huge effect."

The researchers sorted the participants into high and low attractors, and then asked what differentiated them. They used chemical analysis techniques to identify 50 molecular compounds that were elevated in the sebum (a moisturizing barrier on the skin) of the high-attracting participants. From there, they discovered that mosquito magnets produced carboxylic acids at much higher levels than the less-attractive volunteers. These substances are in the sebum and are used by bacteria on our skin to produce our unique human body odor.

To confirm their findings, Vosshall's team enrolled another 56 people for a validation study. Once again, Subject 33 was the most alluring, and stayed so over time.

"Some subjects were in the study for several years, and we saw that if they were a mosquito magnet, they remained a mosquito magnet," says De Obaldia. "Many things could have changed about the subject or their behaviors over that time, but this was a very stable property of the person."

Even knockouts find us

Humans produce mainly two classes of odors that mosquitoes detect with two different sets of odor receptors: Orco and IR receptors. To see if they could engineer mosquitoes unable to spot humans, the researchers created mutants that were missing one or both of the receptors. Orco mutants remained attracted to humans and able to distinguish between mosquito magnets and low attractors, while IR mutants lost their attraction to humans to a varying degree, but still retained the ability to find us.

These were not the results the scientists were hoping for. "The goal was a mosquito that would lose all attraction to people, or a mosquito that had a weakened attraction to everybody and couldn't discriminate Subject 19 from Subject 33. That would be tremendous," Vosshall says, because it could lead to the development of more effective mosquito repellents. "And yet that was not what we saw. It was frustrating."

These results complement one of Vosshall's recent studies, also published in Cell, which revealed the redundancy of Aedes aegypti's exquisitely complex olfactory system. It's a failsafe that the female mosquito relies on to live and reproduce. Without blood, she can't do either. That's why "she has a backup plan and a backup plan and a backup plan and is tuned to these differences in the skin chemistry of the people she goes after," Vosshall says.

The apparent unbreakability of the mosquito scent tracker makes it difficult to envision a future where we're not the number-one meal on the menu. But one potential avenue is to manipulate our skin microbiomes. It is possible that slathering the skin of a high-appeal person like Subject 33 with sebum and skin bacteria from the skin of a low-appeal person like Subject 19 could provide a mosquito-masking effect.

"We haven't done that experiment," Vosshall notes. "That's a hard experiment. But if that were to work, then you could imagine that by having a dietary or microbiome intervention where you put bacteria on the skin that are able to somehow change how they interact with the sebum, then you could convert someone like Subject 33 into a Subject 19. But that's all very speculative."

She and her colleagues hope this paper will inspire researchers to test other mosquito species, including in the genus Anopheles, which spreads malaria, adds Vosshall: "I think it would be really, really cool to figure out if this is a universal effect."

Comments

Popular posts from this blog

Why did Homo sapiens outlast all other human species?

  From - Live Science By  Mindy Weisberger Edited by - Amal Udawatta Reproductions of skulls from a Neanderthal (left), Homo sapiens (middle) and Australopithecus afarensis (right)   (Image credit: WHPics, Paul Campbell, and Attie Gerber via Getty Images; collage by Marilyn Perkins) Modern humans ( Homo sapiens ) are the sole surviving representatives of the  human family tree , but we're the last sentence in an evolutionary story that began approximately 6 million years ago and spawned at least 18 species known collectively as hominins.  There were at least nine  Homo  species — including  H. sapiens  —  distributed around Africa, Europe and Asia by about 300,000 years ago, according to the Smithsonian's  National Museum of Nat ural History  in Washington, D.C. One by one, all except  H. sapiens  disappeared.  Neanderthals  and a  Homo  group known as the  Denisovans  lived alongside...

New Zealand loses first naval ship to sea since WW2

  Aleks Phillips   BBC New  ,   Michael Bristow,    BBC World Service Edited by - Amal Udawatta US Navy HMNZS Manawanui capsized after running aground off the coast of Samoa The Royal New Zealand Navy has lost its first ship to the sea since World War Two, after one of its vessels ran aground off the coast of Samoa. HMNZS Manawanui, a specialist diving and ocean imaging ship, came into trouble about one nautical mile from the island of Upolu on Saturday night local time, while conducting a survey of a reef. It later caught fire before capsizing. All 75 people on board were evacuated onto lifeboats and rescued early on Sunday, New Zealand's Defence Force said in a statement. Officials said the cause of the grounding was unknown and will be investigated. Reuters All 75 people on board have now safely been rescued The incident occurred during a bout of rough and windy weather. Military officials said rescuers "battled" currents and winds that pushed ...

From a Trump presidency to 'game-changing' lawsuits: Seven big climate and nature moments coming in 2025

      From -BBC World News   By-  Jocelyn Timperley and Isabelle Gerretsen   Edited by - Amal Udawatta Getty Images Some key events coming up in 2025 have game-changing potential for our planet. Here, two of the BBC's environment journalists analyse what they could mean for the climate and nature. As countries unveil new climate targets, Donald Trump enters the White House for a second term and a potentially game-changing ruling for future climate lawsuits unfolds – 2025 is set to be a big year for climate and nature.  Speaking in his  New Year's message  in late December, secretary-general of the United Nations  António Guterres said that the world is witnessing "climate breakdown – in real time".  "We must exit this road to ruin. In 2025, countries must put the world on a safer path by dramatically slashing emissions and supporting the transition to a renewable future," he said, stressing that "it is essential – and it is possible...