Skip to main content

The Ancestors of Flying Pterosaurs Were Sleek Reptiles That Ran on the Ground

From Smithsonian Magazine,

By -  Riley Black  - Science Correspondent,

Edited by - Amal Udawatta,

Scleromochlus taylori
An artist’s reconstruction of Scleromochlus taylori, an ancestor of pterosaurs Gabriel Ugueto

Pterosaurs were the first vertebrates to take to the air. Flapping with wings made of a membrane stretched over ludicrously-elongated fourth fingers, these flying reptiles filled the skies between 66 and 220 million years ago in a range of body sizes from sparrow to Cessna. But what did the ancestor of pterosaurs look like? A new analysis of a controversial fossil that is more than 100 years old has helped to resolve the longstanding paleontological puzzle. Using high definition CT scans, an international team of researchers has revealed that an agile Triassic reptile shared many traits in common with the flying saurians. The paleontologists report their findings today in Nature.

The initial discovery that would help bring pterosaur origins into focus was made over a century ago. In 1907, paleontologist Arthur Smith Woodward described a small reptile from the Triassic rocks of Scotland he named Scleromochlus taylori. The reptile was lightly-built, with longer hind legs than front legs, and over time paleontologists started to suspect that this little runner was an early forerunner of pterosaurs. The long legs and narrow feet of Scleromochlus, especially, resembled the legs and feet of pterosaurs. And subtle anatomical clues in the jaw also indicated that Scleromochlus was closer to early pterosaurs than dinosaurs or other Triassic reptiles. But experts couldn’t agree, partly because the fossil’s poor preservation hindered a close look at the telltale features that would resolve the debate.

The enigmatic fossil had to wait for technology to catch up to it. “We knew that there was the potential to learn more about Scleromochlus because of some tests we did on unprepared specimens of another fossil from the same area,” says lead author and National Museums Scotland paleontologist Davide Foffa. What looked like an unassuming block of sandstone turned out to have a gorgeous skeleton of a lizard-like animal called Leptopleuron inside, revealed by micro-CT scans. If the technique could reveal a hidden fossil, the researchers reasoned, then perhaps it could reveal previously unseen aspects of several known Scleromochlus fossils.

In life, Scleromochlus was only about seven inches long and much of that was tail. The bones of this ancient reptile are very small and delicate, so tiny that removing them from the rock might damage them. To get around that problem, Foffa and colleagues took micro-CT scans of multiple Scleromochlus fossils to assemble the first complete and detailed look of the entire animal. Not only was this an exercise in reconstructing in the reptile’s entire form, but the scans allowed researchers to zoom in on skeletal features that otherwise would be incredibly difficult to see with the naked eye.

Being able to scan tiny bones, some still encased in rock, allowed Foffa and colleagues to reconstruct Scleromochlus in more detail than ever before. While Scleromochlus doesn’t look very much like pterosaurs such as Pteranodon or Quetzalcoatlus, the reptile shares some telltale traits in common with the flying reptiles. Small skeletal details such as the shape of the upper jaw bone called the maxilla, the head of the thigh bone and the foot bones of Scleromochlus are similar to those of other reptiles proposed to be related to pterosaur origins. “This is an exciting paper that shows a lot of hard work” says University of Southern California paleontologist Michael Habib, who was not involved in the new study. Even as such scans become more accessible to paleontologists, he notes, assembling so many scans and reconstructing a fossil animal from them is “a heavy lift.”

3-D skeletal Reconstruction of Scleromochlus taylori.
A 3-D skeletal reconstruction of Scleromochlus taylori Matt Humpage / Northern Rogue Studios

The emerging picture of the reptile is quite a bit different from its later relatives. In specific terms, Scleromochlus belonged to a group of reptiles called lagerpetids that have recently been associated with the origin of pterosaurs. The bones of Scleromochlus don’t show any specific adaptations to climbing, hopping or any sort of behavior that might be considered relevant to how pterosaurs evolved flight. Yet the anatomy of the animal still shows a connection to the fliers, meaning that Scleromochlus represents an animal from what paleontologists often call a stem lineage, or the evolutionary branches that we can see leading up to the emergence of a particular group.

“Overall,” Foffa says, “this tells us that the common ancestors of pterosaurs and lagerpetids were likely small-bodied terrestrial animals, which stood on their toes, and were good runners.” In some ways, Universidade de Vigo paleontologist Alfio Alessandro Chiarenza says, the earliest members of the pterosaur lineage were not very dissimilar from dinosaur ancestors, meaning that wildly different reptiles evolved from similar starting points. More than that, this realization makes pterosaurs even stranger. All flying pterosaurs moved on four legs while on the ground, Habib notes, but they evolved from an ancestor that ran through ancient forests on two legs.

Potential pterosaur ancestors and relatives are hard to find in the fossil record, meaning that the proper analysis and categorization of animals like Scleromochlus can have a major affect on what experts think about how pterosaurs evolved. “This study does an unprecedentedly excellent and thorough job both in disentangling the anatomical details of Scleromochlus, early pterosaurs and dinosaurs,” says Chiarenza, who was not involved in the new study.

Paleontologists have been investigating pterosaurs and their origins with greater focus in recent years. The gap between the first definitive pterosaurs and their earliest relatives like Scleromochlus is about 18 million years, Foffa notes, as pterosaurs with transitional features–such as early iterations of wings–have yet to be uncovered. Still, Foffa notes, paleontologists have access to more powerful techniques to study fossils and are slowly refining what sorts of creatures to look for. “I see it as a slow process, piece by piece,” Foffa says. And, he notes, perhaps the key fossils are already waiting in a museum drawer somewhere. “Who knows,” Foffa says, “perhaps we have already found one and we simply are not able to recognize it yet.”

The recognition of Scleromochlus as a kind of proto-pterosaur will help paleontologists refine their search and will surely lead to more finds to come. “Now we can better visualize how one of these small, fleet-footed ancestors probably gave rise to the very first vertebrate to eventually conquer the sky,” Chiarenza says, “soaring over the heads of their dinosaur cousins.”


Comments

Popular posts from this blog

Big freeze drove early humans out of Europe

 From BBC News,   By Pallab Ghosh-   Science correspondent, Edited by - Amal Udawatta, IMAGE SOURCE, PHILIPPE PSAILA/SCIENCE PHOTO LIBRARY Image caption, Remains of a primitive human species known as Homo erectus have been found in Europe dating back to 1.4 million years ago. A big freeze previously unknown to science drove early humans from Europe for 200,000 years, but they adapted and returned, new research shows. Ocean sediments from 1.1 million years ago show temperatures suddenly dropped more than 5C, scientists say. They say our early ancestors couldn't have survived as they didn't have heating or warm clothes. Until now, the consensus had been that humans had existed in Europe continuously for 1.5 million years. Ancient humans' stone tools found in Kenya Ancient human remains found in County Armagh Ancient humans survived longer than we thought Evidence for the big freeze is found in sediments in the seabed off the coast of Lisbon, Portugal. Layers are deposited eac

Email (required) * Constant Contact Use. Comet Nishimura swings by for binoculars and telescopes

 From - Sky & Tellescope, By - Alan Macrobert, Edited by - Amal Udawatta Comet Nishimura on the morning of September 5th, on its way in. The comet is the green bit at left. The star cluster at upper right is the Beehive. The brilliant light at lower right is Venus. Right-click image to open higher-res version in new tab. Michael Jäger took this view "from my observatory in Martinsberg, Lower Austria." It's a stack of eight 30-second exposures he made using a DSLR camera with a 50-mm lens at f/2.5. Comet Nishimura swings by for binoculars and telescopes.  Comet Nishimura (2023 P1), discovered just last month, is brightening toward its September 17th perihelion. The comet starts this week very low in the dawn sky. You'll need a low view to the east-northeast on the mornings of September 9th, 10th, and maybe 11th. The farther north you live the better. The waning crescent Moon won't pose interference. By the 13th or 14th the comet shifts to the low  evening  sky,

INDIA’S CHANDRAYAAN 3 LANDS ON THE MOON; RUSSIA'S LUNA 25 CRASHES

   From - Sky & Telescope   By - David Dikinson,   Edited  by - Amal Udawatta,          The first surface image received from Chandrayaan 3.             ISRO In a first for the nation, India’s Chandrayaan 3 soft-landed in the lunar south pole region of the Moon. Russia’s Luna 25 lander crashed, however. Today was a “historic day for India’s space sector,” says India’s prime minister, Narendra Modi, on   X , formerly known as Twitter. "Congratulations to ISRO for the remarkable success of Chandrayaan 3 lunar mission.” The landing occurred near Manzinus U Crater on the lunar nearside at 12:34 Universal Time (UT) (8:34 a.m. Eastern Daylight Time, or EDT) on Wednesday, August 23rd. This makes India the fourth nation to soft-land on the Moon, after the United States, the former Soviet Union, and China. ESA’s European Space Tracking system (ESTRACK) and NASA’s Deep Space Network (DSN) partnered with ISRO to provide global tracking coverage for Chandrayaan 3. A cheering mission contr