Skip to main content

What Pop Stars and Actual Stars Have in Common

 

From - Smithsonian Magazine

The Cartwheel Galaxy and Musical Instruments

Just as songs repeat in choruses, formations in space take understandable shapes. Pictured here are the large Cartwheel galaxy and two smaller companion galaxies. NASA / Illustration by Emily Lakiewicz

I’m not a scientist—I routinely Google the answers to my daughter’s fourth-grade maths questions—but I do practice a kind of science: I’m a songwriting professor, and up through the Renaissance, music was considered a close relative of math, geometry and astronomy. That may be hard to imagine today, but as I check out the startling images that the James Webb Telescope has been beaming back to us since July—the spiraling “cartwheel” galaxies, binary stars and echoes of the Big Bang—I can see the connection. In astronomy, elements “solve” into understandable orbits or familiar chemicals; in music, they “resolve” into choruses and melodies we can sing back.

Consistently repeatable answers might not be surprising in fourth-grade math, but when a high-powered telescope provides instantly recognizable patterns floating hundreds of millions of light years away, it’s hard not to ask: How is that possible? And similarly, in the realm of music: What causes us to create, and respond to, a similar kind of repetition in our art?

Here’s a wound from early in my teaching career: After listening to a student’s song in class, I suggested he repeat a phrase. When he asked, simply, “Why?” I realized that I didn’t have a satisfactory answer beyond, “Well, that’s just the way most songs are written.” Was it mere tradition? Commerce? Laziness? I didn’t sleep that night. I needed a better response.

Philosophers and writers have long agonized over the nature of repetition and its appeal to the human mind. They’ve discussed past lives (Plato), time spirals (Gianbattista Vico), eternal returns (Friedrich Nietzsche) and the possibility that repetition isn’t even possible (Heraclitus). Unfortunately, none of the ideas I found were particularly helpful, especially for a songwriting class. I wondered if a universal answer might instead come from the universe itself.

I wrote my newest book, Music, Lyrics, and Life: A Field Guide for the Advancing Songwriter, the same way I write songs—I started with a question, followed it, and hung on for the ride. Many of the experts I interviewed weren't songwriters, but still grappled with similar questions in their own fields, and in their own ways: This was definitely the case with cosmologist Janna Levin, a 2012 Guggenheim fellow who currently holds the Claire Tow Professorship of Physics and Astronomy at Barnard College. Levin’s 2016 book, Black Hole Blues and Other Songs from Outer Space, tells the story of the Nobel Prize-winning team that helped build the Laser Interferometer Gravitational-Wave Observatory (LIGO), which detects gravitational waves caused by black holes as they “slosh in space-time…like waves on an ocean.” (Incidentally, you can hear gravitational waves for yourself, right now.)

What I got from Levin was more than an explanation of musical repetition. It was a new interpretation of reality itself.

Songwriters and astrophysicists have an affinity for repetition. It’s frequently used as a tool in music, but for astronomers, there seems to be an assumption that repetition implies forces that are purposefully at work, perhaps even intelligently so.

Absolutely. One of the things SETI—the Search for Extra Terrestrial Intelligence—does is that they look for very regular mathematical signals because they assume that nature won’t provide such a thing—nature’s messy, and so nature can’t do anything so regular. So if you find an incredibly regular signal, you’re hoping that it was sent by somebody who controls their environment, who made it go that way.

But sometimes we’re wrong about that. Have you heard about pulsars? There are big stars that collapse and die, and they don’t quite make black holes—they’re not big enough—so they make a neutron star. And the neutron star is spinning, and it has a huge magnetic field and it basically becomes a lighthouse. It literally has a beam of light, and as it spins, that beam sweeps past you, not irregularly—radio astronomers detected one, and it was clock on, man. Clock on! I don’t remember if it was a millisecond or a second sort of timescale. But it was like, boomboomboom, so regular that [astronomers] jokingly called them LGMs, which meant “little green men.” And then over time, they realized this is a natural source. [A pulsar] is just a perfect clock. Over billions of years, it will not slow down. And it will not waver. And that can happen, that nature makes something that’s so perfect.

What does it say about humans that we’re so intrigued by repeated information?

I am a big believer that we inherit mathematical structures because math made us. Evolution is guided by forces of nature—that’s how we evolve—and those forces, not surprisingly, leave an imprint in the structure of our minds. Of course they have to be mathematical. And in some larger, genetic sense of who our family was, who our parents were—our parents were the laws of physics. And in our minds, it’s encoded there. And we’re discovering the structure of our minds. So I can sit there with a piece of paper and discover algebra, and discover geometry, discover topology, discover different branches of mathematics, because it's in my mind.

Comments

Popular posts from this blog

Big freeze drove early humans out of Europe

 From BBC News,   By Pallab Ghosh-   Science correspondent, Edited by - Amal Udawatta, IMAGE SOURCE, PHILIPPE PSAILA/SCIENCE PHOTO LIBRARY Image caption, Remains of a primitive human species known as Homo erectus have been found in Europe dating back to 1.4 million years ago. A big freeze previously unknown to science drove early humans from Europe for 200,000 years, but they adapted and returned, new research shows. Ocean sediments from 1.1 million years ago show temperatures suddenly dropped more than 5C, scientists say. They say our early ancestors couldn't have survived as they didn't have heating or warm clothes. Until now, the consensus had been that humans had existed in Europe continuously for 1.5 million years. Ancient humans' stone tools found in Kenya Ancient human remains found in County Armagh Ancient humans survived longer than we thought Evidence for the big freeze is found in sediments in the seabed off the coast of Lisbon, Portugal. Layers are deposited eac

Email (required) * Constant Contact Use. Comet Nishimura swings by for binoculars and telescopes

 From - Sky & Tellescope, By - Alan Macrobert, Edited by - Amal Udawatta Comet Nishimura on the morning of September 5th, on its way in. The comet is the green bit at left. The star cluster at upper right is the Beehive. The brilliant light at lower right is Venus. Right-click image to open higher-res version in new tab. Michael Jäger took this view "from my observatory in Martinsberg, Lower Austria." It's a stack of eight 30-second exposures he made using a DSLR camera with a 50-mm lens at f/2.5. Comet Nishimura swings by for binoculars and telescopes.  Comet Nishimura (2023 P1), discovered just last month, is brightening toward its September 17th perihelion. The comet starts this week very low in the dawn sky. You'll need a low view to the east-northeast on the mornings of September 9th, 10th, and maybe 11th. The farther north you live the better. The waning crescent Moon won't pose interference. By the 13th or 14th the comet shifts to the low  evening  sky,

INDIA’S CHANDRAYAAN 3 LANDS ON THE MOON; RUSSIA'S LUNA 25 CRASHES

   From - Sky & Telescope   By - David Dikinson,   Edited  by - Amal Udawatta,          The first surface image received from Chandrayaan 3.             ISRO In a first for the nation, India’s Chandrayaan 3 soft-landed in the lunar south pole region of the Moon. Russia’s Luna 25 lander crashed, however. Today was a “historic day for India’s space sector,” says India’s prime minister, Narendra Modi, on   X , formerly known as Twitter. "Congratulations to ISRO for the remarkable success of Chandrayaan 3 lunar mission.” The landing occurred near Manzinus U Crater on the lunar nearside at 12:34 Universal Time (UT) (8:34 a.m. Eastern Daylight Time, or EDT) on Wednesday, August 23rd. This makes India the fourth nation to soft-land on the Moon, after the United States, the former Soviet Union, and China. ESA’s European Space Tracking system (ESTRACK) and NASA’s Deep Space Network (DSN) partnered with ISRO to provide global tracking coverage for Chandrayaan 3. A cheering mission contr