Skip to main content

The Very large stork-like bird

 

From- Earth Unreal & Wikipedia,

Edited by Vinuri Randula Silva,

The shoebill (Balaeniceps rex) also known as whale headwhale-headed stork, or shoebill stork, is a very large stork-like bird. It derives its name from its enormous shoe-shaped bill. It has a somewhat stork-like overall form and has previously been classified with the storks in the order Ciconiiformes based on this morphology. However, genetic evidence places it with pelicans and herons in the Pelecaniformes. The adult is mainly grey while the juveniles are more  brown. It lives in tropical east Africa in large swamps from South Sudan to Zambia


The shoebill is a tall bird, with a typical height range of 110 to 140 cm (43 to 55 in) and some specimens reaching as much as 152 cm (60 in). Length from tail to beak can range from 100 to 140 cm (39 to 55 in) and wingspan is 230 to 260 cm (7 ft 7 in to 8 ft 6 in). Weight has reportedly ranged from 4 to 7 kg (8.8 to 15.4 lb) A male will weigh on average around 5.6 kg (12 lb) and is larger than a typical female of 4.9 kg (11 lb). The signature feature of the species is its huge, bulbous bill, which is straw-coloured with erratic greyish markings. The exposed culmen (or the measurement along the top of the upper mandible) is 18.8 to 24 cm (7.4 to 9.4 in), the third longest bill among extant birds after pelicans and large storks, and can outrival the pelicans in bill circumference, especially if the bill is considered as the hard, bony keratin portion.

As in the pelicans, the upper mandible is strongly keeled, ending in a sharp nail. The dark coloured legs are fairly long, with a tarsus length of 21.7 to 25.5 cm (8.5 to 10.0 in). The shoebill's feet are exceptionally large, with the middle toe reaching 16.8 to 18.5 cm (6.6 to 7.3 in) in length, likely assisting the species in its ability to stand on aquatic vegetation while hunting. The neck is relatively shorter and thicker than other long-legged wading birds such as herons and cranes. The wings are broad, with a wing chord length of 58.8 to 78 cm (23.1 to 30.7 in), and well-adapted to soaring.

 Molecular studies have found the hamerkop to be the closest relative of the shoebill.

The shoebill was known to ancient Egyptians but was not classified until the 19th century, after skins and eventually live specimens were brought to Europe. John Gould described it in 1850, giving it the name Balaeniceps rex. The genus name comes from the Latin words balaena "whale", and caput "head", abbreviated to -ceps in compound words.

Traditionally considered as allied with the storks (Ciconiiformes), it was retained there in the Sibley-Ahlquist taxonomy which lumped a massive number of unrelated taxa into their "Ciconiiformes". Based on osteological evidence, the suggestion of a pelecaniform affinity was made in 1957 by Patricia Cottam. Microscopic analysis of eggshell structure by Konstantin Mikhailov in 1995 found that the eggshells of shoebills closely resembled those of other Pelecaniformes in having a covering of thick micro globular material over the crystalline shells. In 2003, the shoebill was again suggested as closer to the pelicans (based on anatomical comparisons or the herons (based on biochemical evidence)  A 2008 DNA study reinforces their membership of the Pelecaniformes.

So far, two fossilized relatives of the shoebill have been described: Goliathia from the early Oligocene of Egypt and Paludavis from the Early Miocene of the same country. It has been suggested that the enigmatic African fossil bird Eremopezus was a relative too, but the evidence for that is unconfirmed. All that is known of Eremopezus is that it was a very large, probably flightless bird with a flexible foot, allowing it to handle either vegetation or prey.


The skull

The plumage of adult birds is blue-grey with darker slaty-grey flight feathers. The breast presents some elongated feathers, which have dark shafts. The juvenile has a similar plumage colour, but is a darker grey with a brown tinge. When they are first born, shoebills have a more modestly-sized bill, which is initially silvery-grey. The bill becomes more noticeably large when the chicks are 23 days old and becomes well developed by 43 days.

Flight pattern

Its wings are held flat while soaring and, as in the pelicans and the storks of the genus Leptoptilos, the shoebill flies with its neck retracted. Its flapping rate, at an estimated 150 flaps per minute, is one of the slowest of any bird, with the exception of the larger stork species. The pattern is alternating flapping and gliding cycles of approximately seven seconds each, putting its gliding distance somewhere between the larger storks and the Andean condor (Vultur gryphus). When flushed, shoebills usually try to fly no more than 100 to 500 m (330 to 1,640 ft). Long flights of the shoebill are rare, and only a few flights beyond its minimum foraging distance of 20 m (66 ft) have been recorded.

Distribution and habitate

The shoebill is distributed in freshwater swamps of central tropical Africa, from southern Sudan and South Sudan through parts of eastern CongoRwandaUganda, western Tanzania and northern Zambia. The species is most numerous in the West Nile sub-region and South Sudan (especially the Sudd, a main stronghold for the species); it is also significant in wetlands of Uganda and western Tanzania. More isolated records have been reported of shoebills in Kenya, the Central African Republic, northern Cameroon, south-western EthiopiaMalawi. Vagrant strays to the Okavango BasinBotswana and the upper Congo River have also been sighted. The distribution of this species seems to largely coincide with that of papyrus and lungfish. They are often found in areas of flood plain interspersed with undisturbed papyrus and reedbeds. When shoebill storks are in an area with deep water, a bed of floating vegetation is a requirement. They are also found where there is poorly oxygenated water. This causes the fish living in the water to surface for air more often, increasing the likelihood a shoebill stork will successfully capture it. The shoebill is non-migratory with limited seasonal movements due to habitat changes, food availability and disturbance by humans

Petroglyphs from Oued Djerat, eastern Algeria, show that the shoebill occurred during the Early Holocene much more to the north, in the wetlands that covered the present-day Sahara Desert at that time.

The shoebill occurs in extensive, dense freshwater marshes. Almost all wetlands that attract the species have undisturbed Cyperus papyrus and reed beds of Phragmites and Typha. Although their distribution largely seems to correspond with the distribution of papyrus in central Africa, the species seems to avoid pure papyrus swamps and is often attracted to areas with mixed vegetation. More rarely, the species has been seen foraging in rice fields and flooded plantations.

Behaviour and ecology

The shoebill is noted for its slow movements and tendency to stay still for long periods, resulting in descriptions of the species as "statue-like". They are quite sensitive to human disturbance and may abandon their nests if flushed by humans. However, while foraging, if dense vegetation stands between it and humans, this wader can be fairly tame. The shoebill is attracted to poorly oxygenated waters such as swamps, marshes and bogs where fish frequently surface to breathe. Exceptionally for a bird this large, the shoebill often stands and perches on floating vegetation, making them appear somewhat like a giant jacana, although the similarly sized and occasionally sympatric Goliath heron (Ardea goliath) is also known to stand on aquatic vegetation. Shoebills, being solitary, forage at 20 m (66 ft) or more from one another even where relatively densely populated. This species stalks its prey patiently, in a slow and lurking fashion. While hunting, the shoebill strides very slowly and is frequently motionless. Unlike some other large waders, this species hunts entirely using vision and is not known to engage in tactile hunting. When prey is spotted, it launches a quick violent strike. However, depending on the size of the prey, handling time after the strike can exceed 10 minutes. Around 60% of strikes yield prey. Frequently water and vegetation is snatched up during the strike and is spilled out from the edges of the mandibles. The activity of hippopotamus may inadvertently benefit the shoebill, as submerged hippos occasionally force fish to the surface.

 


Comments

Popular posts from this blog

Why did Homo sapiens outlast all other human species?

  From - Live Science By  Mindy Weisberger Edited by - Amal Udawatta Reproductions of skulls from a Neanderthal (left), Homo sapiens (middle) and Australopithecus afarensis (right)   (Image credit: WHPics, Paul Campbell, and Attie Gerber via Getty Images; collage by Marilyn Perkins) Modern humans ( Homo sapiens ) are the sole surviving representatives of the  human family tree , but we're the last sentence in an evolutionary story that began approximately 6 million years ago and spawned at least 18 species known collectively as hominins.  There were at least nine  Homo  species — including  H. sapiens  —  distributed around Africa, Europe and Asia by about 300,000 years ago, according to the Smithsonian's  National Museum of Nat ural History  in Washington, D.C. One by one, all except  H. sapiens  disappeared.  Neanderthals  and a  Homo  group known as the  Denisovans  lived alongside...

New Zealand loses first naval ship to sea since WW2

  Aleks Phillips   BBC New  ,   Michael Bristow,    BBC World Service Edited by - Amal Udawatta US Navy HMNZS Manawanui capsized after running aground off the coast of Samoa The Royal New Zealand Navy has lost its first ship to the sea since World War Two, after one of its vessels ran aground off the coast of Samoa. HMNZS Manawanui, a specialist diving and ocean imaging ship, came into trouble about one nautical mile from the island of Upolu on Saturday night local time, while conducting a survey of a reef. It later caught fire before capsizing. All 75 people on board were evacuated onto lifeboats and rescued early on Sunday, New Zealand's Defence Force said in a statement. Officials said the cause of the grounding was unknown and will be investigated. Reuters All 75 people on board have now safely been rescued The incident occurred during a bout of rough and windy weather. Military officials said rescuers "battled" currents and winds that pushed ...

From a Trump presidency to 'game-changing' lawsuits: Seven big climate and nature moments coming in 2025

      From -BBC World News   By-  Jocelyn Timperley and Isabelle Gerretsen   Edited by - Amal Udawatta Getty Images Some key events coming up in 2025 have game-changing potential for our planet. Here, two of the BBC's environment journalists analyse what they could mean for the climate and nature. As countries unveil new climate targets, Donald Trump enters the White House for a second term and a potentially game-changing ruling for future climate lawsuits unfolds – 2025 is set to be a big year for climate and nature.  Speaking in his  New Year's message  in late December, secretary-general of the United Nations  António Guterres said that the world is witnessing "climate breakdown – in real time".  "We must exit this road to ruin. In 2025, countries must put the world on a safer path by dramatically slashing emissions and supporting the transition to a renewable future," he said, stressing that "it is essential – and it is possible...