Skip to main content

Ancient viral DNA in human genome guards against infections

 

       . Original written by Krishna Ramanujan,

         Source  - Cornell University.

         Edited by -  Amal Udawatta,

      Source:Cornell University,      Edited by - Amal Udawatta

                  DNA illustration (stock image).                 Credit: © ktsdesign / stock.adobe.com

Viral DNA in human genomes, embedded there from ancient infections, serve as antivirals that protect human cells against certain present-day viruses, according to new research.

The paper, "Evolution and Antiviral Activity of a Human Protein of Retroviral Origin," published Oct. 28 in Science, provides proof of principle of this effect.

Previous studies have shown that fragments of ancient viral DNA -- called endogenous retroviruses -- in the genomes of mice, chickens, cats and sheep provide immunity against modern viruses that originate outside the body by blocking them from entering host cells. Though this study was conducted with human cells in culture in the lab, it shows that the antiviral effect of endogenous retroviruses likely also exists for humans.

The research is important because further inquiry could uncover a pool of natural antiviral proteins that lead to treatments without autoimmune side effects. The work reveals the possibility of a genome defense system that has not been characterized, but could be quite extensive.

"The results show that in the human genome, we have a reservoir of proteins that have the potential to block a broad range of viruses," said Cedric Feschotte, professor of molecular biology and genetics in the College of Agriculture and Life Sciences. John Frank, Ph.D. '20, a former graduate student in Feschotte's lab and now a postdoctoral researcher at Yale University, is the study's first author.

Endogenous retroviruses account for about 8% of the human genome -- at least four times the amount of DNA that make up the genes that code for proteins. Retroviruses introduce their RNA into a host cell, which is converted to DNA and integrated into the host's genome. The cell then follows the genetic instructions and makes more virus.

In this way, the virus hijacks the cell's transcriptional machinery to replicate itself. Typically, retroviruses infect cells that don't pass from one generation to the next, but some infect germ cells, such as an egg or sperm, which opens the door for retroviral DNA to pass from parent to offspring and eventually become permanent fixtures in the host genome.

In order for retroviruses to enter a cell, a viral envelope protein binds to a receptor on the cell's surface, much like a key into a lock. The envelope is also known as a spike protein for certain viruses, such as SARS-CoV-2.

In the study, Frank, Feschotte and colleagues used computational genomics to scan the human genome and catalog all the potential retroviral envelope protein-coding sequences that may have retained receptor binding activity. Then they ran more tests to detect which of these genes were active -- that is, expressing retroviral envelope gene products in specific human cell types.

"We found clear evidence of expression," Feschotte said, "and many of them are expressed in the early embryo and in germ cells, and a subset are expressed in immune cells upon infection."

Once the researchers had identified antiviral envelope proteins expressed in different contexts, they focused on one, Suppressyn, because it was known to bind a receptor called ASCT2, the cellular entry point for a diverse group of viruses called Type D retroviruses. Suppressyn showed a high level of expression in the placenta and in very early human embryonic development.

They then ran experiments in human placental-like cells, as the placenta is a common target for viruses.

The cells were exposed to a type D retrovirus called RD114, which is known to naturally infect feline species, such as the domestic cat. While other human cell types not expressing Suppressyn could be readily infected, the placental and embryonic stem cells did not get infected. When the researchers experimentally depleted placental cells of Suppressyn, they became susceptible to RD114 infection; when Suppressyn was returned to the cells, they regained resistance.

In addition, the researchers did reverse experiments, using an embryonic kidney cell line normally susceptible to RD114. The cells became resistant when the researchers experimentally introduced Suppressyn into these cells.

The study shows how one human protein of retroviral origin blocks a cell receptor that allows viral entry and infection by a broad range of retroviruses circulating in many non-human species. In this way, Feschotte said, ancient retroviruses integrated into the human genome provide a mechanism for protecting the developing embryo against infection by related viruses.

Future work will explore the antiviral activity of other envelope-derived proteins encoded in the human genome, he said.

Co-authors include Carolyn Coyne, a virologist at Duke University's School of Medicine, and Jose Garcia-Perez, a molecular biologist at the University of Granada, Spain.

The study was funded by Cornell, the National Institutes of Health, the Wellcome Trust-University of Edinburgh Institutional Strategic Support Fund, the European Research Council and the Howard Hughes Medical Institute.

Comments

Popular posts from this blog

Why did Homo sapiens outlast all other human species?

  From - Live Science By  Mindy Weisberger Edited by - Amal Udawatta Reproductions of skulls from a Neanderthal (left), Homo sapiens (middle) and Australopithecus afarensis (right)   (Image credit: WHPics, Paul Campbell, and Attie Gerber via Getty Images; collage by Marilyn Perkins) Modern humans ( Homo sapiens ) are the sole surviving representatives of the  human family tree , but we're the last sentence in an evolutionary story that began approximately 6 million years ago and spawned at least 18 species known collectively as hominins.  There were at least nine  Homo  species — including  H. sapiens  —  distributed around Africa, Europe and Asia by about 300,000 years ago, according to the Smithsonian's  National Museum of Nat ural History  in Washington, D.C. One by one, all except  H. sapiens  disappeared.  Neanderthals  and a  Homo  group known as the  Denisovans  lived alongside...

New Comet SWAN Now Visible in Small Scopes

     From :- Sky & Telescope  By :- Bob King  Edited by :- Amal Udawatta This spectacular image of Comet SWAN (C/2025 F2) was taken on April 6th and shows a bright, condensed coma 5′ across and dual ion tails. The longer one extends for 2° in PA 298° and the other 30′ in PA 303°. Details: 11"/ 2.2 RASA and QHY600 camera. Michael Jaeger Amateur astronomers have done it again — discovered a comet. Not by looking through a telescope but through close study of  publicly released, low-resolution images  taken by the  Solar Wind Anisotropies  (SWAN) camera on the orbiting  Solar and Heliospheric Observatory  (SOHO). On March 29th, Vladimir Bezugly of Ukraine was the first to report a moving object in SWAN photos taken the week prior. Michael Mattiazzo of Victoria, Australia, independently found "a pretty obvious comet" the same day using the same images, noting that the object was about 11th magnitude and appeared to be brightening. R...

The indigenous women saving India's endangered giant yams

  From BBC News   By-  Kamala Thiagarajan   Edited by - Amal Udawatta Sai Krishan, Thirunelly Tribal Special Intervention Programme Lakshmi and Shantha with a species of tuber locally called the Noorang (Credit: Sai Krishan, Thirunelly Tribal Special Intervention Programme) In a tribe in southern India, a group of women are working hard to revive the country's ancient native tubers, and bring them back into everyday culture. Lakshmi spends several hours each day digging out large lumpy and hairy yam tubers, starchy roots that grow below the soil. Some weigh an unwieldy 5kg (11lb) and are 4.5ft-long (1.4m), almost as tall as she is. It's painstaking work, says 58-year-old Lakshmi, who goes by one name. First, she has to cut out the thick shoot above the ground. Then, she uses shovels to dig up the earth around the buried stem and a paddle-like flat chisel to gently pry out the tuber. She uses her hands to dig the tuber out of the ground to avoid damaging its delicate...